
Math 53: Multivariable Calculus Sections 201, 204

Worksheet answers for 2021-12-01

If you would like clari�cation on any problems, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to warm-up questions
Question 1. We need to split up the region of integration since we are dealing with a piece-wise de�ned integrand. �e
integrand is ex

2
when x ≥ y and it is e y2 when x ≤ y. Hence our integral is equal to

∫
1

0
∫

x

0
ex

2
dy dx + ∫

1

0
∫

y

0
e y

2
dx dy

which is straightforward to compute.

Question 2.
(a) A�er drawing a picture, we guess that the 
ow curves of this vector �eld are counterclockwise circles centered at the
origin. �e one passing through (1, 1) is then r(t) = ⟨√2 cos t,√2 sin t⟩, where r(π/4) = (1, 1). �is is just a guess
though; let’s actually check that it works:

r′(t) = ⟨−√2 sin t,√2 cos t⟩ = F(√2 cos t,√2 sin t)
since F(x , y) = ⟨−y, x⟩.

(b) It is possible in general (see the preceding part for instance). However it cannot happen if F is conservative. �is is
because if r(t) is the 
ow curve C, then F ⋅ dr = ∣r′(t)∣2 dt is always positive along the curve C, but the integral of a
conservative vector �eld along a closed loop is always zero.

Answers to computations
Problem 1.
(a) �e Divergence �eorem implies that both integrals are equal to zero, since ∇ ⋅ F = 0.
(b) �is problem is quite hard. Let’s deal with∬∂E ∣F ⋅n∣dS �rst, because the cube is easier. It consists of six faces. Consider

the top face Stop, which has unit normal ⟨0, 0, 1⟩. �e integral over this face is

∬
Stop
∣⟨a, b, c⟩ ⋅ ⟨0, 0, 1⟩∣dS =∬

Stop
∣c∣dS = 16∣c∣.

�e other �ve faces can be handled similarly, and altogether we get

32(∣a∣ + ∣b∣ + ∣c∣).
For the sphere ∬∂D ∣F ⋅ n∣dS, we just have a single surface, but we should split up the integral based on whether F ⋅ n
is positive or negative. Note that n is just ⟨x , y, z⟩ (e.g. by computing the gradient ∇(x2 + y2 + z2) and then rescaling
to have length 1). Hence

F ⋅ n = ⟨a, b, c⟩ ⋅ ⟨x , y, z⟩ = ax + by + cz.
�e plane ax+by+cz = 0 separates the sphere into two hemispheres. Let S+ denote the hemispherewhere ax+by+cz ≥
0, and let S− denote the hemisphere where ax+by+cz ≤ 0, both oriented outwards (since we took n = ⟨x , y, z⟩ earlier).
We have

∬
∂D
∣F ⋅ n∣dS =∬

S+
F ⋅ dS +∬

S−
−F ⋅ dS.

Let D+ denote the 3D region x2 + y2 + z2 ≤ 1, ax + by + cz ≥ 0, i.e. the solid hemisphere corresponding to S+. We have
that ∂(D+) consists of S+ together with a disk in the plane ax + by + cz = 0. If we apply the Divergence �eorem to
D+, we obtain

∭
D+

0dV =∬
disk

F ⋅ dS +∬
S+
F ⋅ dS.

�e disk has radius 1, being an equatorial cross-section of the unit sphere, thus it has area π. So

∬
disk

F ⋅ dS =∬
disk
⟨a, b, c⟩ ⋅ −⟨a, b, c⟩√

a2 + b2 + c2 dS = −π
√
a2 + b2 + c2
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hence
∬

S+
F ⋅ dS = π

√
a2 + b2 + c2.

�e integral ∬S− −F ⋅ dS can be dealt with similarly, or you can argue by symmetry it must be the same. So the �nal
answer is 2π

√
a2 + b2 + c2.

One can also approach this problem by taking advantage of the rotational symmetry of the sphere to rotate the
vector �eld into the form ⟨0, 0,√a2 + b2 + c2⟩ for instance. �e overall approach would still be the same, but the
separating plane just becomes z = 0 so things are simpler to write down.

Problem 2.
(a) �is is the chain rule.

d
dt
( f (r(t))) = fx

dx
dt

+ fy
dy
dt

+ fz
dz
dt

= ∇ f ⋅ r′(t)
= Dr′(t) f

where we have used ∣r′(t)∣ = 1 in the last step.
(b) Strictly speaking this part does not really rely on the previous, since dz/dt is just the z component of r′. You could

interpret it as an application of the previous part in the particular case f (x , y, z) = z, in which case Dr′(0) f is just the
⟨0, 0, 1⟩ ⋅ r′(0), so again, just the z-component of r′.
To �nd r′(0), we note that it’s tangent to C and that we are told it has length 1. It turns out that, although it is

certainly doable, C is very hard to parametrize. It is more convenient to �nd a tangent vector by noting that such
a vector would have to be tangent to both surfaces in the problem, and thus perpendicular to their normal vectors.
Hence we take the cross product

⟨1, 1,−2⟩ × ⟨3, 4,−5⟩ = ⟨3,−1, 1⟩.
Note that ⟨3, 4,−5⟩ came from evaluating ∇(x2 + y2 − z2) at the point (3, 4, 5) and then rescaling.
Hence a unit vector in this direction is 1√

11
⟨3,−1, 1⟩. However, this is actually clockwise when viewed from above,

so we need to take its negative, meaning that r′(0) = − 1√
11
⟨3,−1, 1⟩. So the �nal answer is −1/√11.
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