Worksheet answers for 2021-12-01

If you would like clarification on any problems, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to warm-up questions

Question 1. We need to split up the region of integration since we are dealing with a piece-wise defined integrand. The integrand is $e^{x^{2}}$ when $x \geq y$ and it is $e^{y^{2}}$ when $x \leq y$. Hence our integral is equal to

$$
\int_{0}^{1} \int_{0}^{x} e^{x^{2}} \mathrm{~d} y \mathrm{~d} x+\int_{0}^{1} \int_{0}^{y} e^{y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

which is straightforward to compute.

Question 2.

(a) After drawing a picture, we guess that the flow curves of this vector field are counterclockwise circles centered at the origin. The one passing through $(1,1)$ is then $\mathbf{r}(t)=\langle\sqrt{2} \cos t, \sqrt{2} \sin t\rangle$, where $\mathbf{r}(\pi / 4)=(1,1)$. This is just a guess though; let's actually check that it works:

$$
\mathbf{r}^{\prime}(t)=\langle-\sqrt{2} \sin t, \sqrt{2} \cos t\rangle=\mathbf{F}(\sqrt{2} \cos t, \sqrt{2} \sin t)
$$

since $\mathbf{F}(x, y)=\langle-y, x\rangle$.
(b) It is possible in general (see the preceding part for instance). However it cannot happen if \mathbf{F} is conservative. This is because if $\mathbf{r}(t)$ is the flow curve C, then $\mathbf{F} \cdot \mathrm{d} \mathbf{r}=\left|\mathbf{r}^{\prime}(t)\right|^{2} \mathrm{~d} t$ is always positive along the curve C, but the integral of a conservative vector field along a closed loop is always zero.

Answers to computations

Problem 1.
(a) The Divergence Theorem implies that both integrals are equal to zero, since $\nabla \cdot \mathbf{F}=0$.
(b) This problem is quite hard. Let's deal with $\iint_{\partial E}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$ first, because the cube is easier. It consists of six faces. Consider the top face $S_{\text {top }}$, which has unit normal $\langle 0,0,1\rangle$. The integral over this face is

$$
\iint_{S_{\mathrm{top}}}|\langle a, b, c\rangle \cdot\langle 0,0,1\rangle| \mathrm{d} S=\iint_{S_{\mathrm{top}}}|c| \mathrm{d} S=16|c| .
$$

The other five faces can be handled similarly, and altogether we get

$$
32(|a|+|b|+|c|) .
$$

For the sphere $\iint_{\partial D}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$, we just have a single surface, but we should split up the integral based on whether $\mathbf{F} \cdot \mathbf{n}$ is positive or negative. Note that \mathbf{n} is just $\langle x, y, z\rangle$ (e.g. by computing the gradient $\nabla\left(x^{2}+y^{2}+z^{2}\right)$ and then rescaling to have length 1). Hence

$$
\mathbf{F} \cdot \mathbf{n}=\langle a, b, c\rangle \cdot\langle x, y, z\rangle=a x+b y+c z .
$$

The plane $a x+b y+c z=0$ separates the sphere into two hemispheres. Let S_{+}denote the hemisphere where $a x+b y+c z \geq$ 0 , and let S_{-}denote the hemisphere where $a x+b y+c z \leq 0$, both oriented outwards (since we took $\mathbf{n}=\langle x, y, z\rangle$ earlier). We have

$$
\iint_{\partial D}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S=\iint_{S_{+}} \mathbf{F} \cdot \mathrm{d} \mathbf{S}+\iint_{S_{-}}-\mathbf{F} \cdot \mathrm{d} \mathbf{S} .
$$

Let D_{+}denote the 3D region $x^{2}+y^{2}+z^{2} \leq 1, a x+b y+c z \geq 0$, i.e. the solid hemisphere corresponding to S_{+}. We have that $\partial\left(D_{+}\right)$consists of S_{+}together with a disk in the plane $a x+b y+c z=0$. If we apply the Divergence Theorem to D_{+}, we obtain

$$
\iiint_{D_{+}} 0 \mathrm{~d} V=\iint_{\text {disk }} \mathbf{F} \cdot \mathrm{d} \mathbf{S}+\iint_{S_{+}} \mathbf{F} \cdot \mathrm{d} \mathbf{S} .
$$

The disk has radius 1 , being an equatorial cross-section of the unit sphere, thus it has area π. So

$$
\iint_{\text {disk }} \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\iint_{\text {disk }}\langle a, b, c\rangle \cdot \frac{-\langle a, b, c\rangle}{\sqrt{a^{2}+b^{2}+c^{2}}} \mathrm{~d} S=-\pi \sqrt{a^{2}+b^{2}+c^{2}}
$$

hence

$$
\iint_{S_{+}} \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\pi \sqrt{a^{2}+b^{2}+c^{2}} .
$$

The integral $\iint_{S_{-}}-\mathbf{F} \cdot \mathrm{d} \mathbf{S}$ can be dealt with similarly, or you can argue by symmetry it must be the same. So the final answer is $2 \pi \sqrt{a^{2}+b^{2}+c^{2}}$.

One can also approach this problem by taking advantage of the rotational symmetry of the sphere to rotate the vector field into the form $\left\langle 0,0, \sqrt{a^{2}+b^{2}+c^{2}}\right\rangle$ for instance. The overall approach would still be the same, but the separating plane just becomes $z=0$ so things are simpler to write down.

Problem 2.

(a) This is the chain rule.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(f(\mathbf{r}(t))) & =f_{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+f_{y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+f_{z} \frac{\mathrm{~d} z}{\mathrm{~d} t} \\
& =\nabla f \cdot \mathbf{r}^{\prime}(t) \\
& =D_{\mathbf{r}^{\prime}(t)} f
\end{aligned}
$$

where we have used $\left|\mathbf{r}^{\prime}(t)\right|=1$ in the last step.
(b) Strictly speaking this part does not really rely on the previous, since $\mathrm{d} z / \mathrm{d} t$ is just the z component of \mathbf{r}^{\prime}. You could interpret it as an application of the previous part in the particular case $f(x, y, z)=z$, in which case $D_{\mathbf{r}^{\prime}(0)} f$ is just the $\langle 0,0,1\rangle \cdot \mathbf{r}^{\prime}(0)$, so again, just the z-component of \mathbf{r}^{\prime}.

To find $\mathbf{r}^{\prime}(0)$, we note that it's tangent to C and that we are told it has length 1 . It turns out that, although it is certainly doable, C is very hard to parametrize. It is more convenient to find a tangent vector by noting that such a vector would have to be tangent to both surfaces in the problem, and thus perpendicular to their normal vectors. Hence we take the cross product

$$
\langle 1,1,-2\rangle \times\langle 3,4,-5\rangle=\langle 3,-1,1\rangle .
$$

Note that $\langle 3,4,-5\rangle$ came from evaluating $\nabla\left(x^{2}+y^{2}-z^{2}\right)$ at the point $(3,4,5)$ and then rescaling.
Hence a unit vector in this direction is $\frac{1}{\sqrt{11}}\langle 3,-1,1\rangle$. However, this is actually clockwise when viewed from above, so we need to take its negative, meaning that $\mathbf{r}^{\prime}(0)=-\frac{1}{\sqrt{11}}\langle 3,-1,1\rangle$. So the final answer is $-1 / \sqrt{11}$.

